TABLE OF CONTENTS

Model Number Chart .. 1
Introduction .. 1
Safety Information & Instructions ... 2
Special Information .. 3
 Rotation ... 3
 Pressure Relief Valves .. 3
 Mechanical Seals .. 3
 Maintenance ... 3
 Cleaning Pump ... 3
 Storage ... 3
 Suggested Repair Tools .. 3
Pump Disassembly ... 5
Pump Assembly ... 6
Installation: Carbon Graphite Bushings 9
Thrust Bearing Adjustment .. 9
Pressure Relief Valve Instructions .. 10
 Disassembly ... 10
 Assembly .. 10
 Pressure Adjustment .. 10
 Important Ordering Information 10
General Installation Notes .. 11
Foundation .. 12
Component & Unit Lifting Features 12
Alignment ... 14
Piping ... 14
Start Up ... 15
Troubleshooting ... 16
 Vacuum Gauge - Suction Port ... 16
 Pressure Gauge - Discharge Port 16
Rapid Wear .. 17
Preventative Maintenance .. 18
Do’s & Don’ts .. 18
 Installation .. 18
 Operation ... 18
 Maintenance ... 19
ESB-515 ... 19
 Lubrication of Viking Pumps .. 19
 Lubrication of Viking Reducers 19
 Lubrication of Viking Associative Equipment 19

INTRODUCTION

The illustrations used in this manual are for identification purposes only and cannot be used for ordering parts. Obtain a parts list from your Viking Pump® representative. Always give a complete name of part, part number and material with the model number and serial number of pump when ordering repair parts. The unmounted pump or pump unit model number and serial number are on the nameplate.

This manual only applies to the pump models specified in the "Model Number Chart" on page 1. Pump specifications and recommendations are listed in the Catalog Sections, which are available at vikingpump.com.

FIGURE 1: GG, HJ, HL SIZES

FIGURE 2: AS, AK, AL SIZES
SAFETY INFORMATION & INSTRUCTIONS

IMPROPER INSTALLATION, OPERATION OR MAINTENANCE OF PUMP MAY CAUSE SERIOUS INJURY OR DEATH, AND/OR RESULT IN DAMAGE TO PUMP AND/OR OTHER EQUIPMENT. VIKING'S WARRANTY DOES NOT COVER FAILURE DUE TO IMPROPER INSTALLATION, OPERATION OR MAINTENANCE.

THE FOLLOWING SAFETY INSTRUCTIONS MUST BE FOLLOWED AND ADHERED TO AT ALL TIMES.

⚠️ DANGER = FAILURE TO FOLLOW THE INDICATED INSTRUCTION MAY RESULT IN SERIOUS INJURY OR DEATH.

⚠️ WARNING = IN ADDITION TO SERIOUS INJURY OR DEATH, FAILURE TO FOLLOW THE INDICATED INSTRUCTION MAY CAUSE DAMAGE TO PUMP AND/OR OTHER EQUIPMENT.

⚠️ WARNING

INSTALL pressure gauges/sensors next to the pump suction and discharge connections to monitor pressures.

⚠️ WARNING

USE extreme caution when lifting the pump. Suitable lifting devices should be used when appropriate. Lifting eyes installed on the pump must be used only to lift the pump, not the pump with drive and/or base plate. If the pump is mounted on a base plate, the base plate must be used for all lifting purposes. If slings are used for lifting, they must be safely and securely attached. For weight of the pump alone (which does not include the drive and/or base plate) refer to the Viking Pump® product catalog.

⚠️ DANGER

DO NOT attempt to dismantle a pressure relief valve that has not had the spring pressure relieved or is mounted on a pump that is operating.

⚠️ DANGER

AVOID contact with hot areas of the pump and/or drive. Certain operating conditions, temperature control devices (jackets, heat-tracing, etc.), improper installation, improper operation, and improper maintenance can all cause high temperatures on the pump and/or drive.

⚠️ WARNING

THE PUMP must be provided with pressure protection. This may be provided through a relief valve mounted directly on the pump, an in-line pressure relief valve, a torque limiting device, or a rupture disk. If pump rotation may be reversed during operation, pressure protection must be provided on both sides of pump. Relief valve adjusting screw caps must always point towards suction side of the pump. If pump rotation is reversed, position of the relief valve must be changed. Pressure relief valves cannot be used to control pump flow or regulate discharge pressure. For additional information, refer to Appendix, General Installation Notes, item 5 on Pressure Protection or contact your Viking Pump® representative for Engineering Service Bulletin ESB-31.

⚠️ WARNING

THE PUMP must be installed in a manner that allows safe access for routine maintenance and for inspection during operation to check for leakage and monitor pump operation.

⚠️ DANGER

BEFORE opening any liquid chamber (pumping chamber, reservoir, relief valve adjusting cap fitting, etc.) be sure that:

• Any pressure in the chamber has been completely vented through the suction or discharge lines or other appropriate openings or connections.
• The pump drive system (motor, turbine, engine, etc.) has been "locked out" or otherwise been made non-operational, so that it cannot be started while work is being done on the pump.
• You know what material the pump has been handling, have obtained a material safety data sheet (MSDS) for the material, and understand and follow all precautions appropriate for the safe handling of the material.

⚠️ DANGER

BEFORE operating the pump, be sure all drive guards are in place.

⚠️ DANGER

DO NOT operate pump if the suction or discharge piping is not connected.

⚠️ DANGER

DO NOT place fingers into the pumping chamber, or its connection ports, or into any part of the drive train if there is any possibility of the pump shaft being rotated.

⚠️ WARNING

DO NOT exceed the pumps rated pressure, speed, and temperature, or change the system/duty parameters from those the pump was originally supplied, without confirming its suitability for the new service.

⚠️ WARNING

BEFORE operating the pump, be sure that:

• It is clean and free from debris.
• All valves in the suction and discharge pipelines are fully opened.
• All piping connected to the pump is fully supported and correctly aligned with the pump.
• Pump rotation is correct for the desired direction of flow.
SPECIAL INFORMATION

ROTATION
Viking pumps operate equally well in a clockwise or counter-clockwise rotation. Shaft rotation determines which port is suction and which is discharge. Suction port is where pumping elements (gear teeth) come out of mesh.

If pump rotation is reversed during operation, pressure protection must be provided on both sides of pump.

Relief valve adjusting screw cap must always point towards suction side of pump. If the rotation is reversed, the head should be removed and the pipe plug placed on the suction side of the head.

PRESSURE RELIEF VALVES
1. Viking pumps are positive displacement pumps and must be provided with some sort of pressure protection. This may be a relief valve mounted directly on the pump, an inline pressure relief valve, a torque limiting device or a rupture disk.
2. There are relief valve options available on those pump models designed to accept a relief valve. Options may include an internal relief valve or return to tank relief valve.
3. If pump rotation is reversed during operation, pressure protection must be provided on both sides of pump.
4. Relief valve adjusting screw cap must always point towards suction side of pump. See "Figure 3" on page 10.
5. Pressure relief valves cannot be used to control pump flow or regulate discharge pressure.

For additional information on pressure relief valves, refer to Appendix, General Installation Notes, item 5 on Pressure Protection or contact your Viking Pump® representative for Engineering Service Bulletin ESB-31.

MECHANICAL SEALS
Extra care should be taken in repair of pumps with mechanical seals. Be sure to read and follow all special instructions supplied with your pump.

MAINTENANCE

These pumps are designed for long, trouble-free service life under a wide variety of application conditions with minimum maintenance. The points listed below will help provide long service life.

CLEANING PUMP
Keep pump as clean as possible. This will facilitate inspection, adjustment and repair work and help prevent overlooking a dirt-covered grease fitting.

STORAGE
If pump is to be stored, or not used for six months or more, pump must be drained and a light coat of non-detergent SAE 30 weight oil or food grade equivalent must be applied to all internal pump parts.

Lubricate the fittings and apply grease to pump shaft extension. Viking suggests rotating pump shaft by hand one complete revolution every 30 days to circulate the oil. Tighten all pump assembly bolts before putting pump in service after being stored.

SUGGESTED REPAIR TOOLS
The following tools must be available to properly repair these pumps. These tools are in addition to standard mechanics' tools such as open-end wrenches, pliers, screwdrivers, etc. Most of the items can be obtained from an industrial supply house.

1. Soft headed hammer
2. Allen wrenches (set screws & special mechanical seals)
3. Snap ring pliers
 - INTERNAL – Viking Part No. 2-810-047-999; GG, HJ, HL pumps
 - EXTERNAL – Viking Part No. 2-810-029-375; GG, HJ, HL pumps
4. Mechanical seal installation sleeve
 - 2-751-001-730 for 0.75 inch seal; GG pumps
 - 2-751-004-730 for 1.25 inch seal; AS, AK, AL pumps
 - No sleeve needed for HJ, HL pumps
5. Bearing locknut spanner wrench – 2-810-043-375-00
6. Spanner wrench, adjustable pin type for use on bearing housing end cap – 2-810-008-375-00
7. Brass or plastic bar
8. Arbor press

![Figure 3](image-url)
1. See “Figure 4" on page 4 and “Figure 5" on page 4 for model to be disassembled and name of parts.

2. Mark the head and casing before disassembly to ensure proper reassembly.

3. GG NOTE: The four valve capscrews, valve and gasket must be removed before the six head capscrews are removed.

 Remove the head capscrews.

4. Tilt the top of the head back when removing to prevent the idler from falling off the idler pin. Avoid damaging the head gasket.

 Remove the head from the pump.

5. Remove the idler and bushing assembly. If the idler bushing needs replacing, refer to “Installation: Carbon Graphite Bushings” on page 9.

⚠ DANGER !

Before opening any Viking pump liquid chamber (pumping chamber, reservoir, relief valve adjusting cap fitting, etc.) be sure:

1. That any pressure in the chamber has been completely vented through the suction or discharge lines, or other appropriate openings or connections.

2. That the driving means (motor, turbine, engine, etc.) has been “locked out” or made non-operational, so that it cannot be started while work is being done on pump.

3. That you know what liquid the pump has been handling and the precautions necessary to safely handle the liquid. Obtain a material safety data sheet (MSDS) for the liquid to be sure these precautions are understood.

Failure to follow above listed precautionary measures may result in serious injury or death.
6. Insert a brass bar in the port opening and between the rotor teeth to keep the shaft from turning. Turn the locknut counterclockwise and remove locknut. See “Figure 6” on page 5 or “Figure 7” on page 5.

7. Loosen the two setscrews in the face of the bearing housing and turn the thrust bearing assembly counterclockwise and remove from casing. See “Figure 6” on page 5 or “Figure 7” on page 5.

8. GG, HJ, HL: Remove the snap ring from the shaft. See “Figure 6” on page 5.

AS, AK, AL: Remove the bearing spacer from the shaft. See “Figure 7” on page 5.

9. Remove the brass bar from the port opening.

10. The rotor and shaft can now be removed by tapping on the end of the shaft with a lead hammer or, if using a regular hammer, use a brass or plastic barbrass or plastic barbetween the shaft and hammer. The spring and rotary member of the seal will come out with the rotor and shaft.

11. GG, HJ, HL: Remove the inner snap ring and single row ball bearing from the casing. See “Figure 6” on page 5.

AS, AK, AL: Remove the bearing retainer washer. The washer may have stayed with the rotor and shaft when removed or is against the ball bearing. See “Figure 7” on page 5.

12. Remove the seal seat or stationary part of the seal from the casing.

13. Disassemble the thrust bearing assembly.

 GG, HJ, HL: Remove the outer snap ring from the bearing housing and remove the ball bearing. See “Figure 6” on page 5.

 AS, AK, AL: Loosen the two setscrews in the flange of the bearing housing. Rotate the end cap and lip seal counterclockwise and remove. Remove the ball bearing. See “Figure 7” on page 5.

The casing should be examined for wear, particularly in the area between the ports. All parts should be checked for wear before the pump is put together.

When making major repairs, such as replacing a rotor and shaft; it is advisable to also install a new mechanical seal, head and idler pin, idler and bushing. Refer to “Installation: Carbon Graphite Bushings” on page 9.

Wash the bearings in clean solvent. Blow out the bearings with compressed air. Do not allow the bearings to spin, turn them slowly by hand. Spinning the bearings will damage the race and balls. Make sure the bearings are clean, then lubricate with non-detergent SAE 30 weight oil and check for roughness. Roughness can be determined by turning the outer race by hand. Replace the bearings if they have roughness.

Be sure the shaft is free from nicks, burrs and foreign particles that might damage the mechanical seal. Scratches on the shaft in seal area will provide leakage paths under the mechanical seal. Use a fine emery cloth to remove scratches or sharp edges.

PUMP ASSEMBLY

Mechanical Seal

1. Installing New Seal:

 - For PTFE fitted mechanical seal: see “Figure 9” on page 7 and “Figure 10” on page 7.
 - For SEP1 pumps: see “Figure 12” on page 8 and “Figure 13” on page 8.
 - For all seals: see “Figure 8” on page 6 and “Figure 11” on page 7.

GENERAL INFORMATION:

Mechanical seals for HJ, HL, AS, AK and AL size 4197 Series™ pumps are of the drive set screw type. Mechanical seals for the GG4197 pumps are friction driven and are pressed onto the rotor hub.

Installation sleeves are furnished with replacement seals for GG, AS and AK size pumps. (this is not necessary with HJ and HL pumps). **NOTE:** Cleanliness during installation is essential to seal performance. Never allow the seal faces to contact a dirty surface.

ORDER OF ASSEMBLY:

1. Stationary seat and seat ring in casing
2. Installation sleeve on the shaft (where appropriate)
3. Seal rotating portion on the shaft
4. Rotor and shaft into casing
5. Head with gasket and idler onto the casing

PREPARATION:

Remove burrs from threads and gently radius leading edges on rotor shaft. Use 300 grit paper to radius the edges and to polish the shaft at the seal area. Clean the rotor hub, shaft and seal seat bore in casing, making sure they are free from dirt and grit.

Place installation sleeve on shaft, wide end against shaft shoulder. See “Figure 8” on page 6.

FIGURE 8 (ELASTOMERIC BELLOWS SEAL SHOWN)

NOTE: Coat rotor shaft, tapered installation sleeve and inner diameter of mechanical seal with P-80® or equivalent before assembly.
STATIONARY SEAT ASSEMBLY:

See “Figure 9” on page 7, “Figure 10” on page 7, “Figure 12” on page 8 and “Figure 13” on page 8.

All Sizes: Coat the outside diameter of the seat ring assembly and the inside diameter of the seal housing bore with SAE 30 oil or food grade equivalent. Align the slot in the back of the seal seat with the anti-rotation pin in the bottom of the casing seat bore and start the seal seat into this bore. Protect the lapped surface of the seal seat with a disc of clean cardboard, and press the seal seat into this bore until it is firmly at the bottom of the bore. A hammer handle or wood dowel will serve to press against the cardboard disc and seat.

ASSEMBLY OF SEAL ROTATING PORTION:

HJ, HL, AS, AK, AL: (see “Figure 11” on page 7)
- Generously coat the inside diameter of the rotating assembly, shaft and tapered sleeve with P-80® or equivalent. Be sure the shaft is free of any scratches, nicks and burrs. Check the internal parts (wedge or O-rings and carbon washer) of the rotating portion, so that the parts concentrically align. This ensures the internal parts will not be pinched or twisted during installation. With the shaft pointed upward, push the rotating portion down along the shaft, onto the large shaft diameter behind the rotor. Remove the holding clips, which hold the spring-loaded disc away from wedge or O-Rings and carbon parts. See “Figure 8” on page 6. Push the seal against the rotor hub and tighten the set screws to lock the seal to the shaft. Remove the tapered sleeve.

GG: The rotating portion of the mechanical seal for the GG4197 size pump does not have set screws to drive it, and must depend upon interference fit with the rotor hub. See “Figure 11” on page 7. The rotating portion must be disassembled before the retainer (cartridge containing spring, disc, wedges or O-Ring and carbon face) can be pressed upon rotor hub. See “Figure 10” on page 7 or “Figure 13” on page 8.

To disassemble the rotating portion of the seal, compress the carbon face and rapidly depress the retaining ring through the notch at the end of the retainer cartridge, as shown in “Figure 14” on page 8.

Press the retainer cartridge onto the rotor hub. See “Figure 11” on page 7.

At the factory, an installation tube is used to press the retainer cartridge onto the rotor hub. In lieu of a special tool, a 6-1/2” length of one-inch schedule 40 pipe, or some blocks of wood and a light hammer can be used.

Lubricate the rotor hub with PTFE paste, grease or SAE 30 oil, and start the retainer onto the leading edge of the rotor hub as evenly as possible.

Insert one inch pipe onto the retainer cartridge and press it against the rotor hub. See “Figure 11” on page 7. If a pipe is not available, with two blocks of wood (one in each hand), push on the outside edge of the retainer to force the retainer down the hub. It may be necessary to use a length of hard wood and a light hammer to completely set the retainer cartridge against the back of the rotor.

Check the dimension from the end of the retainer to a machined portion on the back of the rotor. Check at least two places 180 degrees apart. The runout should not exceed 0.003” (the plane formed by the end of the retainer should be perpendicular to the shaft as closely as possible).
Clean off the assembly just installed. Insert the spring and disc. Lubricate the two piece wedge or O-Ring inside and outside with SAE 30 oil or food grade equivalent. Place the tapered sleeve furnished with the replacement seals on the shaft against the largest shaft diameter and coat it with SAE 30 oil or food grade equivalent. Push the wedge or O-Ring assembly over the tapered sleeve and using the carbon washer, push the wedge or O-Ring onto the retainer against the disc. Align the retainer with the carbon washer indents, compress and secure with retainer ring. When the carbon face is compressed against the spring, some “drag” should be felt, but the spring must be able to push the wedge or O-Ring and carbon face out against the retainer ring.

2. Remove the installation sleeve.

3. All models - Flush sealing faces of both the rotary member and the seal seat with light oil, and install the rotor and shaft. Push the rotor and shaft into the casing slowly until the ends of the rotor teeth are just below the face of the casing.

Place the gasket on the head and install the head and idler assembly on the pump. The pump head and casing were marked before disassembly to ensure proper reassembly. If not, be sure the idler pin, which is offset in the pump head, is positioned toward and equal distance between the port connections to allow for proper flow of liquid through the pump.

4. Tighten the head capscrews evenly.

5. If the pump was equipped with a relief valve, and was removed during disassembly, install on the head with new gaskets. The relief valve adjusting screw cap must always point towards the suction port. Refer to “Figure 3” on page 10. For relief valve repair or adjustments, refer to “Pressure Relief Valve Instructions,” page 9.

6. In 2005, the use of single seal bearings were phased out. Pumps of all sizes now use "Sealed for Life" bearings that have seals on both sides. The new bearings can be installed either side first and do not need to be packed with grease.

7. Install the single row ball bearing in the casing. (For older models using single seal bearings, pack the ball bearing with multi-purpose grease, NLGI #2, and install in the casing with the sealed end towards the head end of the pump.) Install the inner snap ring in GG, HJ and HL size pumps. See “Figure 6” on page 5.

AS, AK, AL: Pumps do not have a snap ring; a bearing retainer washer must be assembled over the end of the shaft before the bearing is assembled. See “Figure 7” on page 5.

8. AS, AK, AL: Place the bearing spacer over the shaft, and against the single row ball bearing in the casing. See “Figure 7” on page 5.

9. GG, HJ, HL: Install the shaft snap ring in the groove in the shaft. See “Figure 6” on page 5.

10. For models using single seal bearings, pack the lubrication chamber between the inner ball bearing and the double row ball bearing in the thrust bearing assembly approximately half full with multi-purpose grease, NLGI #2. See “Figure 6” on page 5 and “Figure 7” on page 5.
11. Pack the double row ball bearing with multi-purpose grease, NLGI #2 and press into the bearing housing, with shield side toward the coupling end of the shaft. See “Figure 6” on page 5. (AS, AK and AL size pumps do not use a shielded bearing). Install the snap ring to hold the bearing in place on GG, HJ and HL size pumps.

AS, AK, AL: Install the lip seal in the bearing housing end of the cap. The lip should face towards the end of the shaft. Put the bearing spacer sleeve in the lip seal and install in the bearing housing and tighten the setscrews securely. See “Figure 7” on page 5.

12. Insert a brass or plastic bar through the port opening between the rotor teeth to keep the shaft from turning.

13. Start the thrust bearing assembly into the casing. Turn by hand until tight. This forces the rotor against the head. Replace and tighten the locknut on the shaft.

14. Remove brass or plastic bar from port opening

15. Adjust the pump end clearance. Refer to “Thrust Bearing Adjustment” on page 9.

INSTALLATION: CARBON GRAPHITE BUSHINGS

When installing carbon graphite bushings, extreme care must be taken to prevent breaking. Carbon graphite is a brittle material and easily cracked. If cracked, the bushing will quickly disintegrate. Using a lubricant and adding a chamfer on the bushing and the mating part will help in installation. The additional precautions listed below must be followed for proper installation.

1. A press must be used for installation.
2. Be certain bushing is started straight.
3. Do not stop pressing operation until bushing is in proper position. Starting and stopping will result in a cracked bushing.
4. Check bushing for cracks after installation.

DANGER !

Before starting pump, be sure all drive equipment guards are in place.
Failure to properly mount guards may result in serious injury or death.

THRUSS BEARING ADJUSTMENT

1. Loosen the two screws in the face of the thrust bearing assembly.
 Turn the thrust bearing assembly clockwise until it can no longer be turned by hand. Back off counter-clockwise until the rotor shaft can be turned by hand with a noticeable drag.

2. Make a mark on the outside diameter of the bearing housing and a corresponding mark on the casing.

3. For standard end clearance, back off the thrust bearing assembly the required length measured on the outside diameter of the bearing housing. See “Table 1” on page 9.

4. After the adjustment is made, tighten the two setscrews in the face of the bearing housing assembly to secure the position. Your pump is now set with standard end clearances and locked.

Operating the pump at higher temperatures or viscosities may require additional end clearance. Contact your Viking Pump® representative for those clearances.

TABLE 1: STANDARD END CLEARANCE

<table>
<thead>
<tr>
<th>Pump Size</th>
<th>Distance in Inches on O.D. of Bearing Housing</th>
<th>Standard End Clearance</th>
</tr>
</thead>
<tbody>
<tr>
<td>GG</td>
<td>0.69 (11/16)</td>
<td>.005</td>
</tr>
<tr>
<td>HJ, HL</td>
<td>0.94 (15/16)</td>
<td>.005</td>
</tr>
<tr>
<td>AS, AK, AL</td>
<td>1.25 (1-1/4)</td>
<td>.008</td>
</tr>
</tbody>
</table>

Before opening any Viking pump liquid chamber (pumping chamber, reservoir, relief valve adjusting cap fitting, etc.) be sure:

1. That any pressure in the chamber has been completely vented through the suction or discharge lines, or other appropriate openings or connections.
2. That the driving means (motor, turbine, engine, etc.) has been “locked out” or made non-operational, so that it cannot be started while work is being done on pump.
3. That you know what liquid the pump has been handling and the precautions necessary to safely handle the liquid. Obtain a material safety data sheet (MSDS) for the liquid to be sure these precautions are understood.

Failure to follow above listed precautionary measures may result in serious injury or death.

⚠️ **DANGER !**

Before opening any Viking pump liquid chamber (pumping chamber, reservoir, relief valve adjusting cap fitting, etc.) be sure:

1. That any pressure in the chamber has been completely vented through the suction or discharge lines, or other appropriate openings or connections.
2. That the driving means (motor, turbine, engine, etc.) has been “locked out” or made non-operational, so that it cannot be started while work is being done on pump.
3. That you know what liquid the pump has been handling and the precautions necessary to safely handle the liquid. Obtain a material safety data sheet (MSDS) for the liquid to be sure these precautions are understood.

Failure to follow above listed precautionary measures may result in serious injury or death.
PRESSURE RELIEF VALVE INSTRUCTIONS

FIGURE 15: RELIEF VALVE - ALL SIZES

NOTE: Image is representative only.

Valve - List Of Parts

V1. Valve Cap	V6. Valve Body
V2. Adjusting Screw	V7. Valve Spring
V5. Bonnet	V10. Bonnet Gasket*

* AS, AK, AL sizes only

DISASSEMBLY

Mark valve and head before disassembly to ensure proper reassembly.

1. Remove valve cap.
2. Measure and record length of extension of adjusting screw. Refer to “A” on “Figure 15” on page 10.
3. Loosen locknut and back out adjusting screw until spring pressure is released.
4. Remove bonnet, spring guide, spring and poppet from valve body. Clean and inspect all parts for wear or damage and replace if necessary.

ASSEMBLY

Reverse procedures outlined under “Disassembly” on page 10. If valve is removed for repairs be sure to replace in same position. Relief valve adjusting screw cap must always point towards suction side of pump. If pump rotation is reversed, remove relief valve and turn end for end.

PRESSURE ADJUSTMENT

If a new spring is installed or if pressure setting of pressure relief valve is to be changed from that which the factory has set, the following instructions must be carefully followed.

1. Carefully remove valve cap which covers adjusting screw. Loosen locknut which locks adjusting screw so pressure setting will not change during operation of pump.
2. Install a pressure gauge in discharge line for actual adjusting operation.
3. Turn adjusting screw CW (in) to increase pressure and CCW (out) to decrease pressure. For guidance dimensions, contact your Viking Pump® representative for Engineering Standard ES-37.
4. Close the discharge line at a point beyond the pressure gauge. Limit the amount of time the pump is being operated at this condition. The temperature inside the pump will rise rapidly. Gauge will show maximum pressure that valve will allow while pump is in operation.
5. Once pressure is set, tighten locknut and replace cap gasket and valve cap.

IMPORTANT ORDERING INFORMATION

In ordering parts for pressure relief valve, always give model number and serial number of pump as it appears on nameplate and name of part wanted. When ordering springs, be sure to give pressure setting desired.

DANGER !

Before opening any Viking pump liquid chamber (pumping chamber, reservoir, relief valve adjusting cap fitting, etc.) be sure:

1. That any pressure in the chamber has been completely vented through the suction or discharge lines, or other appropriate openings or connections.
2. That the driving means (motor, turbine, engine, etc.) has been “locked out” or made non-operational, so that it cannot be started while work is being done on pump.
3. That you know what liquid the pump has been handling and the precautions necessary to safely handle the liquid. Obtain a material safety data sheet (MSDS) for the liquid to be sure these precautions are understood.

Failure to follow above listed precautionary measures may result in serious injury or death.

© 2019 Viking Pump, Inc. • Cedar Falls, IA
NOTE: This Appendix section is for reference only. Not all pump construction features apply to pumps within this Technical Service Manual.

GENERAL INSTALLATION NOTES

Before installation is started, a few items of a general nature should be considered.

1. Location - Always locate the pump as close as possible to the supply of liquid to be pumped. Locate it below the liquid supply if at all practical. Viking pumps are self-priming but the better the suction conditions the better the performance.

2. Accessibility - The pump should be located where it is accessible for inspection, maintenance, and repair. For large pumps, allow room to remove the rotor and shaft without removing the pump from the base.

3. Port Arrangement - Since the pumps have different port arrangements depending on the model, port location should be checked before starting the installation. The ports may be upright, opposite or at right angles to each other, see Figure A1. The right angle ports are normally right-hand, see Figure A2; some models are available with left-hand arrangements; still other models are available with the right angle ports located in any one of eight positions including right-hand and left-hand.

4. Suction/Discharge - Shaft rotation will determine which port is suction and which is discharge. A look at Figure A3 will show how rotation determines which port is which. As the pumping elements (gears) come out of mesh, point “A” on Figure A3, liquid is drawn into the suction port. Then at point “B” the gears come into mesh, and the liquid is forced out the discharge port. Reversing the rotation reverses the flow through the pump. When determining shaft rotation, always look from the shaft end of the pump. Unless otherwise specified, rotation is assumed to be clockwise (CW), which makes the suction port on the right side of the pump. The idler pin, which is offset in the pump head, should be properly positioned toward and an equal distance between the port connections. See Figure A3 for correct idler pin location in relation to pump ports.

FIGURE A1

FIGURE A2

FIGURE A3

FIGURE A4: CUTAWAY OF VIKING INTERNAL PRESSURE RELIEF VALVE

FIGURE A5-A: INTERNAL PRESSURE RELIEF VALVE
5. **Pressure Protection** - Viking pumps are positive displacement pumps. This means that when the pump is rotated, liquid will be delivered to the discharge side of the pump. If there is no place for this liquid to go, i.e. the discharge line is blocked or closed, pressure can build up until the motor stalls, the drive equipment fails, a pump part breaks or ruptures, or the piping bursts. Because of this, some form of pressure protection must be used with a positive displacement pump. This may be a relief valve mounted directly on the pump, an inline relief valve, a torque limiting device or a rupture disk.

The pressure relief valve mounted on most Viking pumps and most in-line valves are of the spring-loaded poppet design. See Figure A4. The spring (a) holds poppet (b) against the seat in the valve body (c) with a given force determined by the spring size and by how tightly it is compressed by the adjusting screw (d). The pump discharge pressure pushes against the underside of the poppet at point (e). When the force exerted by the liquid under the poppet exceeds that exerted by the spring, the poppet lifts and liquid starts to flow through the valve.

As the discharge pressure builds up, more and more of the liquid flows through until a pressure is reached at which all of the liquid being pumped is going through the valve. This pressure is the relief valve setting.

Viking pumps can be furnished with either an internal pressure relief valve - one which directs the flow from the valve back to the suction side of the pump - or a return-to-tank valve - which directs the flow through piping back to the supply tank. See Figure A5-A and Figure A5-B. An inline relief valve mounted in the discharge piping also directs the flow back to the supply tank. This type of valve should be mounted close to the pump so that the pressure drop through the piping between the pump and the valve is at a minimum. Be sure there are no shutoff valves between the pump and relief valve. Piping from a return-to-tank or an in-line valve to the supply tank should also be as short and as large as possible.

NOTE: On some models, the relief valve is mounted on the pump casing instead of the pump head.

The spring-loaded poppet-type valve is strictly a differential valve, sensing only those pressures on each side of the poppet. It should not be used as a pressure or flow control device. It is intended strictly as a relief valve.

The pressure at which either the return-to-tank or internal relief valve bypasses can be changed by turning the adjusting screw. Do not back the adjusting screw all the way out. Stop when spring tension is off the screw (the screw starts to turn easily). For details on maintenance of the relief valve, refer to the Technical Service Manual covering your model series.

6. **Motor** - follow local electrical codes when hooking up motors.

FOUNDATION

Every pump should have a solid foundation. It may be any structure sufficiently strong to hold the pump rigid and to absorb any strain or shock that may be encountered.

A certified print of the pumping unit should be used in preparing the foundation. If a separate foundation is provided, make it at least four inches wider and longer than the base of the unit.

When the unit is placed on the foundation, it should be leveled and checked for position against the piping layout and then fastened down.

COMPONENT & UNIT LIFTING FEATURES

Removable lifting features, such as threaded eye bolts and hoist rings, installed in components (pumps, reducers, motors, etc.) and baseplates should be left on the components. These features are used to safely lift and move the individual components. Following are general guidelines for lifting Viking Pump® units.
NOTE: Units should be lifted by the base lifting features using two or more lifting slings.

FIGURE A7: EXAMPLES OF PROPER LIFTING METHOD

NOTE: Use two or more lifting slings around the pump and the motor when the base does not have lifting features. Make sure the slings are secure and the load is balanced before attempting to lift.

FIGURE A8: EXAMPLE OF IMPROPER LIFTING METHOD

NOTE: NEVER lift the unit with slings unsecured under the base. The slings can slide, allowing the unit to tip and/or fall. Improper lifts can result in personal injury and/or damage to the unit.

FIGURE A9: EXAMPLE OF IMPROPER LIFTING METHOD

NOTE: NEVER lift the unit with slings connected to the component lifting features. The lifting features are designed for the individual component and are not rated to lift the entire unit. Improper lifts can result in personal injury and/or damage to the unit.

FIGURE A10-A
Use a straightedge. These surfaces must be parallel.

Check width between these surfaces with inside calipers to be certain the faces are equal distance apart and parallel.

FIGURE A10-B
When sheaves are properly aligned, all points A, B, C, D will touch string or straightedge.
ALIGNMENT

CHECK ALIGNMENT AFTER MOUNTING
For detailed coupling alignment procedures see coupling manufacturers' recommendations.

The pump, drive, and motor were properly aligned at the time they were assembled. During shipping and mounting the alignment is often disturbed. BE SURE TO RECHECK ALIGNMENT AFTER THE PUMP UNIT IS INSTALLED!

1. Check pump ports to be sure they are square and in the proper position; shim or move the pump as required. Do not force piping to line up with the ports.

2. If the pump is driven by a flexible coupling(s) either directly connected to the motor or through a reducer, remove any coupling guards or covers and check alignment of the coupling halves. At a minimum, a straightedge (such as a piece of key stock) across the coupling must rest evenly on both rims at the top, bottom, and sides. See Figure A10-A.

3. If the pump is driven by V-belts, check the alignment by using a long straightedge or tightly drawn string across the face of the sheaves. See Figure A10-B.

4. Make a final check on alignment after piping is hooked up. Refer to item 13 in Piping section.

Figure A11 and Figure A12 show typical direct drive and gear reducer drive units.

5. For high temperature applications (those above 300°F) allow the pump to reach operating temperature, then recheck alignment.

PIPING

The cause of many pumping problems can be traced to suction piping. It should always be as large and short as practical. For help in selecting the proper size suction and discharge piping, refer to Viking General Catalog Section 510.

Before starting the layout and installation of your piping system, consider the following points:

1. Never use piping smaller than the pump port connections.

2. Be sure the inside of the pipe is clean before hooking it to the pump.

3. FOOT VALVE - When pumping a light liquid with a suction lift, a foot valve at the end of the suction piping or a check valve in the first horizontal run will hold the liquid in the line and make it easier for the pump to prime. Be sure the foot or check valve is big enough so that it doesn’t cause excessive line loss.

4. When approaching an obstacle in the suction or discharge line, go around the obstacle instead of over it. Going over it creates an air pocket. See Figure A13.

5. Where practical, slope the piping so no air or liquid pockets will be formed. Air pockets in the suction line make it hard for the pump to prime.

6. For a suction line with a long horizontal run, keep the horizontal portion below the liquid level if possible. This keeps the pipe full of liquid and reduces the amount of air the pump must evacuate at startup. This is most helpful when there is no foot valve. See Figure A14.

7. When piping a hot or cold system (liquid being handled is at a temperature different from the air surrounding the pump), be sure allowance is made for expansion and contraction of the piping. Loops, expansion joints, or unsecured (this does not mean unsupported) runs should be used so the pump casing is not distorted.

8. STRAINER - It is always good practice to consider a strainer on the suction side of a positive displacement pump. The strainer will keep foreign objects from going into the pump. Without a strainer objects can lock the pump, and damage the internals and drive. The strainer basket mesh or perforation size should be big enough so that it does not cause excessive pressure drop, but it should be fine enough to protect the pump. When in doubt as to the proper size, check with the manufacturer, giving pipe size, flow rate, and viscosity involved. Provision should be made for cleaning the strainer. If the pump operates continuously, a bypass should be built around the strainer, or two strainers should be put in parallel with proper valving so they can be isolated for cleaning. Use of a strainer is particularly important at start up to help clean the system of weld beads, pipe scale, and other foreign objects. For additional information, refer to TSM 640.

9. If the pump is not equipped with a relief valve, consideration should be given to mounting one in the discharge line. Refer to discussion on pressure protection under item 5 in General Installation Notes section.

10. The pump should not be used to support the piping. The weight of the piping should be carried by hangers, supports, stands, etc.

11. When fastening the piping to the pump it should not be necessary to impose any strain on the pump casing. “Springing” or “drawing” the piping up to the pump...
cause distortion, possible misalignment, and probable rapid wear of the pump. Do not use the pump to correct errors in piping layout or assembly.

12. All joints of the piping system should be tight; pipe sealer will help assure leak-free threaded joints. Leaks in the suction line permitting air to be drawn in may cause a noisy pump or a reduction in capacity. It is not recommended to use PTFE tape on NPT ports as a pipe sealer. This action can result in cracks in the pump.

13. ALIGNMENT - Check the alignment of the drive after the piping is hooked up. As a final check on pump alignment, remove the head of the pump and with a feeler gauge determine if there is clearance all the way around between the rotor and casing. Because of manufacturing tolerances, bushing clearances, etc., the rotor may not be centered in the casing, but it should not drag; dragging would indicate unit misalignment or casing distortion from piping strain. Making this check is most desirable on installations involving Q, M and N size general purpose pumps.

14. The auxiliary piping hooked to jackets, glands, etc. for heating, cooling, quenching, or for other purposes should receive the same attention as the piping handling the pumped liquid.

15. Provide a pressure relief device in any part of a pump and piping system that can be valved off and, thus, completely isolated. This is particularly important:
 a. When handling a cold liquid such as refrigeration ammonia that can warm up to ambient temperatures when the pump is shut off.
 b. When handling a liquid such as asphalt or molasses that has to be heated before it can be pumped.

The rise in temperature causes the liquid to expand; if there is no provision for pressure relief in the closed off section, there is a chance that the pump or piping will rupture.

START UP

Before starting the pump, check the following:

1. Are there vacuum and pressure gauges on or near the pump? These gauges are the quickest and most accurate way of finding out what is happening in the pump.

2. Check alignment - See suggestions in the Alignment section of this manual.

3. Check piping to be sure there is no strain on the pump casing.

4. Rotate the pump shaft by hand to be sure it turns freely. **MAKE SURE THE PUMP DRIVER IS LOCKED OUT OR CANNOT BE ENERGIZED BEFORE DOING THIS.**

5. Jog motor to be sure it is turning in the right direction; refer to discussion on pump rotation under item 4 in General Installation Notes section.

6. Check any relief valves to be sure they are installed correctly. Refer to discussion on relief valves in General Installation Notes section.

7. Check suction piping to be sure:
 a. It is all connected and tight
 b. Valves are open
 c. End of pipe is below liquid level

8. Check discharge piping to be sure:
 a. It is all connected and tight
 b. Valves are open
 c. There is a place for the liquid to go

9. Lubricate any grease fitting on the pump using a #2 NLGI grease. Check any gear reducer, motor, coupling, etc. for instructions and lubricate as recommended by the manufacturer. See Engineering Service Bulletin ESB-515 at the end of the Appendix for Viking standard grease types to check compatibility.

10. For packed pumps, loosen packing gland nuts so gland can be moved slightly by hand. Adjust gland to reduce leakage only after pump has run long enough to reach constant temperature. Packing should weep a little to keep it cool and lubricated.

11. Do not use the Viking pump to flush, pressure test or prove the system with water. Either remove the pump or run piping around it while flushing or testing. Pumping water, dirty or otherwise, can cause a noisy pump or a reduction in capacity. It is not recommended to use PTFE tape on NPT ports as a pipe sealer. This action can result in cracks in the pump.

12. Check to be sure all guards are in place.

13. Check the pump to be sure it is heated to operating temperature (if jacketed or heat traced).

If the pump begins to deliver liquid within 60 seconds, it can continue to be operated. If liquid is not leaving the discharge port, stop the pump. Running the pump longer than one minute without liquid inside it can damage the pump. Review the steps just outlined, consider what the suction and discharge gauges indicate, and see Troubleshooting section. If everything appears to be in order, put some liquid in the pump. This will help it prime.

The pump can be restarted. If nothing is flowing within two minutes, stop the pump. The pump is not a compressor; it will not build up much air pressure. It may be necessary to vent the discharge line until liquid begins to flow.
If the pump still does not deliver flow, the cause may be one or more of the following:

1. Suction line air leaks. Vacuum gauge reading should help determine if this is the problem.
2. End of suction pipe not submerged deep enough in liquid.
3. Suction lift is too great or the suction piping is too small.
4. Liquid is vaporizing in the suction line before it gets to the pump.

If after consideration of these points it still does not pump, review again all points under START UP. Read through Troubleshooting in this manual and try again. If it still does not pump, contact your Viking Pump® representative.

TROUBLESHOOTING

A Viking pump that is properly installed and maintained will give long and satisfactory performance.

NOTE: Before making any pump adjustment or opening the pump liquid chamber in any manner, make sure that:

1. Any pressure in the pumping chamber has been vented through the suction or discharge lines or other openings provided for this purpose.
2. The driver has been “locked out” so that it cannot inadvertently be started while work is being done on the pump.
3. The pump has been allowed to cool down to the point where there is no chance of anyone being burned.

If trouble does develop, one of the first steps toward finding the difficulty is to install a vacuum gauge in the suction port and a pressure gauge in the discharge port. Readings on these gauges often will give a clue as to where to start looking for the trouble.

VACUUM GAUGE - SUCTION PORT

1. High reading would indicate:
 a. Suction line is blocked by a stuck foot valve, stuck gate valve, or plugged strainer.
 b. Liquid is too viscous to flow through the piping.
 c. Lift is too high.
 d. Line is too small.

2. Low reading would indicate:
 a. Air leak in suction line.
 b. End of pipe is not in liquid.
 c. Pump is worn.
 d. Pump is dry - should be primed.

3. Fluttering, jumping, or erratic reading:
 a. Liquid is vaporizing.
 b. Liquid is coming to pump in slugs, possibly an air leak, insufficient liquid above the end of the suction pipe.
 c. Vibrating from cavitation, misalignment, or damaged parts.

PRESSURE GAUGE - DISCHARGE PORT

1. High reading would indicate:
 a. High viscosity, small diameter discharge line or long discharge line.
 b. Gate valve is partially closed.
 c. Filter is plugged.
 d. Vertical head did not consider a high specific gravity liquid.
 e. Line is partially plugged from build up on inside of pipe.
 f. Liquid in the pipe is not up to temperature.
 g. Liquid in the pipe has undergone a chemical reaction and has solidified.
 h. Relief valve is set too high.

2. Low reading would indicate:
 a. Relief valve is set too low.
 b. Relief valve poppet is not seating properly.
 c. Bypass around the pump is partially open.
 d. Too much extra clearance.
 e. Pump is worn.

3. Fluttering, jumping, or erratic reading:
 a. Cavitation.
 b. Liquid is coming to the pump in slugs.
 c. Air leak is in the suction line.
 d. Vibrating from misalignment or mechanical problems.

Some of the following may also help pinpoint the problem:

A. Pump does not pump.

1. Pump has lost its prime due to air leak, low level in tank, foot valve stuck.
2. Suction lift is too high.
3. Rotating in wrong direction.
4. Motor does not come up to speed.
5. Suction and discharge valves not open.
6. Strainer is clogged.
8. Pump is worn out.
9. Any changes in the liquid system or operation that would help explain the trouble, e.g. new source of supply, added more lines, inexperienced operators, etc.
10. Too much end clearance.
11. Head position is incorrect. See Figure A3.
12. Temperature changes either in the liquid or environment.
13. Mag Drive pumps ONLY: The magnetic coupling is decoupling. Changes in application (temperature, pressure, viscosity, etc.) may require torque beyond coupling capabilities.

B. Pump starts, then loses its prime.

1. Supply tank is empty.
2. Liquid is vaporizing in the suction line.
3. Air leaks or air pockets in the suction line; leaking air through packing or mechanical seal.
4. Pump is worn out.
C. Pump is noisy.
1. Pump is being starved (heavy liquid cannot get to pump fast enough). Increase suction pipe size or reduce length.
2. Pump is cavitating (liquid vaporizing in the suction line). Increase suction pipe size or reduce length. If pump is above the liquid, raise the liquid level closer to the pump. If the liquid is above the pump, increase the head of liquid.
3. Check alignment.
4. May have a bent shaft or rotor tooth. Straighten or replace.
5. Relief valve chatter. Increase pressure setting.
6. May have to anchor base or piping to eliminate or reduce vibration.
7. May be a foreign object trying to get into the pump through the suction port.
8. Mag Drive pumps ONLY: The magnetic coupling has decoupled. Shut off and let cool, then restart.

D. Pump not up to capacity.
1. Starving or cavitating. Increase suction pipe size or reduce length.
2. Strainer partially clogged.
3. Air leak in suction piping or along pump shaft.
4. Running too slowly. Check the motor is running at the correct speed and that it is wired correctly.
5. Bypass line around pump partially open.
6. Relief valve set too low or stuck open.
7. Pump is noisy.
8. Too much end clearance.
9. Head position incorrect. See Figure A3.

E. Pump takes too much power.
1. Running too fast. Verify the motor speed, reducer ratio, sheave size, and other drive components are correct for the application?
2. The liquid is too viscous for the size of the unit. Heat the liquid to reduce viscosity, increase the pipe size, slow down the pump, or use a larger motor.
3. Discharge pressure higher than calculated. Verify with a pressure gauge. Increase size or reduce length of pipe, reduce speed (capacity), or get bigger motor.
4. Packing gland drawn down too tight.
5. Pump misaligned.
6. Extra clearance on pumping elements may not be sufficient for operating conditions. Check parts for evidence of drag or contact in pump and increase clearance where necessary.
7. System pressure relief valve is set too high.
8. Bushings have locked to shaft or pin, or the liquid has set up in the pump.

F. Rapid Wear.
On most applications the pump will operate for many months or years before it gradually loses its ability to deliver capacity or pressure. Examination of such a pump would show a smooth wear pattern on all parts. Rapid wear, occurring in a few minutes, hours or days, shows up as heavy grooving, galling, twisting, breaking or similar severe signs of trouble. See Rapid Wear Table.

RAPID WEAR TABLE

<table>
<thead>
<tr>
<th>CAUSE</th>
<th>EVIDENCE</th>
<th>POSSIBLE SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. ABRAIVES</td>
<td>Gouges or marks made by large, hard particles; a rapid wearing away of bushings from very small abrasives; or anything in between.</td>
<td>Flush the system with the pump removed. Install strainer in suction line. Most abrasive objects and particulate is removed after a few cycles (or days) of flushing.</td>
</tr>
<tr>
<td>2. CORROSION</td>
<td>Rust, pitting or metal appears to be “eaten” away.</td>
<td>Check the Viking General Catalog Liquid List for materials of construction recommendation. Consider whether all of the materials used in pump construction were attacked; consider other materials used in the system to determine how they resisted the liquid. Check to see whether or not the liquid has been contaminated to make it more corrosive than anticipated.</td>
</tr>
<tr>
<td>3. EXCEEDING OPERATING LIMITS</td>
<td>Noisy operation, broken bushings, twisted shaft, parts show evidence of high heat (discoloration).</td>
<td>Review General Catalog for operating limits on particular model involved.</td>
</tr>
<tr>
<td>4. INSUFFICIENT EXTRA CLEARANCE</td>
<td>Pump may stall. Evidence of heavy contact between end of rotor teeth and head or other parts.</td>
<td>Increase end clearance and/or contact your Viking Pump® representative with details of the application, so that information regarding proper extra clearance may be provided.</td>
</tr>
<tr>
<td>5. LACK OF LUBRICATION</td>
<td>Noisy bearings, localized heating at bearings or lip seal, smoke, rapid bushing wear.</td>
<td>Be sure all grease fittings are greased before starting, and instructions for lubrication of drive equipment are followed; consider use of auxiliary lubricating equipment.</td>
</tr>
<tr>
<td>6. MISALIGNMENT</td>
<td>Wear on only one part of a surface, e.g., one side of the casing, one side of the packing gland, only a portion of the face of the head.</td>
<td>Double check alignment of drive equipment and piping. Check the alignment under conditions as close to operating conditions as possible.</td>
</tr>
<tr>
<td>7. RUN DRY</td>
<td>Pump stalls because parts have uneven expansion caused by frictional heat; galling between surfaces having relative motion; seal seats and idler pins changing color because of high heat.</td>
<td>Be sure there is liquid in the system at the time of start up. Provide some kind of automatic alarm or shut-off if supply tank runs dry.</td>
</tr>
</tbody>
</table>
PREVENTATIVE MAINTENANCE

Performing a few preventative maintenance procedures will extend the life of your pump and reduce the overall cost of ownership.

A. Lubrication - Grease all grease fittings after every 500 hours of operation. If service is severe, grease more often. Do it gently with a hand gun until the grease exiting the lip seal or relief plug is similar in consistency and color to the new grease. Use a NLGI #2 grease for normal applications. See ESB-515 at the end of the Appendix for Viking standard grease types to check compatibility. For hot or cold applications, use appropriate grease.

B. Packing Adjustment - Occasional packing adjustment may be required to keep leakage to a slight weep. If impossible to reduce leakage by gentle tightening, replace packing or use different type. Refer to Technical Service Manual on particular model series for details on repacking.

C. End Clearance Adjustment - After long service, the running clearance between the end of the rotor teeth and the head may have increased through wear. This wear may cause a loss of capacity or pressure. Resetting end clearance will normally improve pump performance. Refer to TSM on particular model series for procedure on adjusting end clearance for pump involved.

D. Examine Internal Parts - Periodically remove the head, examine idler and bushing and head and pin for wear. Replacing a relatively inexpensive idler bushing and idler pin after only moderate wear will eliminate the need to replace more expensive parts at a later date. Refer to TSM on particular model series for procedure in removing head of the pump. Be sure idler does not slide off the idler pin as the head is removed. If it does slide off the idler can cause personal injury or damage the part.

E. Cleaning the Pump - A clean pump is easier to inspect, lubricate, adjust, and runs cooler.

F. Storage - If pump is to be stored or not used for six months or more, pump must be drained, and a light coat of non-detergent SAE 30 weight oil must be applied to all internal pump parts. Lubricate fittings and apply grease to pump shaft extension. Viking suggests rotating pump shaft by hand one complete revolution every 30 days to circulate the oil. Retighten all gasketed joints before using the pump.

DO’S & DON'TS

Do’s and Don’ts for installation, operation, and maintenance of Viking pumps to assure safe, long, trouble-free operation.

INSTALLATION

1. DO install pump as close to supply tank as possible.
2. DO leave working space around the pumping unit.
3. DO use large, short, and straight suction piping.
4. DO install a strainer in the suction line.
5. DO double check alignment after the unit is mounted and piping is hooked up.
6. DO provide a pressure relief valve for the discharge side of the pump.
7. DO cut out the center of gaskets used as port covers on flanged port pumps.
8. DO record pump model number and serial number and file for future reference.

OPERATION

1. DON'T run pump at speeds faster than shown in the catalog for your model.
2. DON'T require pump to develop pressures higher than those shown in the catalog for your model.
3. DON'T operate pumps at temperatures above or below limits shown in the catalog for your pump.
4. DON'T operate pumps without all guards being in place.
5. DON'T operate pump without a relief valve on the pump or in the discharge piping. Be sure valve is mounted and set correctly.
6. DON'T exceed catalog limits for temperature and pressures of fluids in jacketed areas of pump.
7. DON'T use the pump in a system which includes a steam, air, or vapor blow or purge without provision for over-speed shutdown, in case the pump starts to act as a turbine and over-speeds the drive.
8. DON'T operate the pump with all of the liquid bypassing through a pump mounted internal type relief valve, or without any flow of liquid going through the pump for more than a couple of minutes. Operation under either of these conditions may result in a heat build-up in the pump, which could cause hazardous conditions or happenings.
MAINTENANCE

1. **DO** make sure any pump that has residual system pressure in it, or that has handled high vapor pressure liquids, such as LP-gas, ammonia, Freons, etc., has been vented through the suction or discharge lines or other openings provided for this purpose.

2. **DO** make sure that if the pump is still hooked to the driver while maintenance is being performed that the driver has been "locked out", so that it cannot be inadvertently started while work is being done on the pump.

3. **DO** make sure any pump that has handled a corrosive, flammable, hot, or toxic liquid has been drained, flushed, vented and/or cooled before it is disassembled.

4. **DO** remember that a few simple preventative maintenance procedures such as periodic lubrication, adjustment of end clearance, examination of internal parts, etc., will extend the service life of your pump.

5. **DO** obtain, read and keep maintenance instructions furnished with your pump.

6. **DO** have spare parts, pumps or standby units available, particularly if the pump is an essential part of a key operation or process.

7. **DON’T** drop parts during disassembly, e.g., idler can slip from the pin as the head is removed from the pump. It may cause personal injury or damage the part.

8. **DON’T** stick fingers in the ports of a pump. Serious injury may result.

9. **DON’T** spin the idler on the idler pin. Fingers may be jammed between teeth and crescent.

ESB-515

Effective 25-July-19

LUBRICATION OF VIKING PUMPS

<table>
<thead>
<tr>
<th>Usage of Grease</th>
<th>General Description of Grease Used by Viking</th>
<th>Viking Recommended Supplier</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grease used for anti-friction bearings, sleeve bearings and lantern rings</td>
<td>Premium EP, Multi-purpose polyurea base grease</td>
<td>Any NLGI Grade 2 premium quality, multi-purpose, polyurea grease</td>
</tr>
<tr>
<td>Grease used for bracket bushing when seal is behind rotor</td>
<td>Petrolatum</td>
<td>Chevron Petrolatum Snow White</td>
</tr>
<tr>
<td>Grease used for O-Pro™ Seal</td>
<td>Edible Grease, aluminum complex</td>
<td>Chevron FM ALC EP 0, 1, 2</td>
</tr>
</tbody>
</table>

Lubricate each grease fitting every 500 hours of operation or every six months, whichever occurs first. If service is severe, grease more often. Be sure the grease is compatible with the grease used by Viking. Grease used for the bracket bushing and O-Pro™ Seal should be compatible with the liquid being pumped.

Reservoir on Ammonia Pumps: The Series 4924A ammonia pumps are shipped without oil in the reservoir. Before start-up, fill the reservoir with one pint of Light Refrigeration Oil that is compatible with the Neoprene seal and with a maximum viscosity of 15,000 SSU at operating temperature. Drain and refill the reservoir after the first 200 hours of operation and every 1000 hours thereafter. Refer to Technical Service Manual TSM 1467.

Pumping Chamber of Stainless Pumps: All internal parts are coated with test fluid to avoid galling when the pump is first installed. Be sure the pump is kept full of liquid when in operation to prevent damage to the pump.

LUBRICATION OF VIKING REDUCERS

Viking gear reducers, “A”, “B”, “C” sizes use SAE 30 oil above 32°F and SAE 10W oil below 32°F.

- **A Size:** 3/8 PT. (6 oz)
- **B Size:** 1/2 PT. (8 oz.)
- **C Size:** 2-1/4 PT. (36 oz.)

Viking gear reducers are shipped less oil. Before start-up, fill to proper level with quantity and type of oil shown in box at left. After first 100 hours of operation, drain and refill with new lubricant. Check lubricant level every 2000 hours or every six months. Once each year, drain and refill.

LUBRICATION OF VIKING ASSOCIATIVE EQUIPMENT

Check any motor, coupling, gear reducer or other drive equipment for manufacturer’s instructions and lubricate as recommended.
WARRANTY

Viking pumps, strainers and reducers are warranted to be free of defects in material and workmanship under normal conditions of use and service. The warranty period varies by type of product. A Viking product that fails during its warranty period under normal conditions of use and service due to a defect in material or workmanship will be repaired or replaced by Viking. At Viking’s sole option, Viking may refund (in cash or by credit) the purchase price paid to it for a Viking product (less a reasonable allowance for the period of use) in lieu of repair or replacement of such Viking product. Viking’s warranty is subject to certain restrictions, limitations, exclusions and exceptions. A complete copy of Viking’s warranty, including warranty periods and applicable restrictions, limitations, exclusions and exceptions, is posted on Viking’s website (www.vikingpump.com/warranty/warranty-info). A complete copy of the warranty may also be obtained by contacting Viking through regular mail at Viking Pump, Inc., 406 State Street, Cedar Falls, Iowa 50613, USA.

THIS WARRANTY IS AND SHALL BE VIKING’S SOLE AND EXCLUSIVE WARRANTY AND IS IN LIEU OF ALL OTHER WARRANTIES, EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ALL WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT, ALL OF WHICH OTHER WARRANTIES ARE EXPRESSLY EXCLUDED. THE RIGHTS AND REMEDIES UNDER THIS WARRANTY ARE AND SHALL BE THE SOLE AND EXCLUSIVE RIGHTS AND REMEDIES AGAINST VIKING. EXCEPT FOR THE SPECIFIC LIABILITIES AND OBLIGATIONS PROVIDED UNDER THIS WARRANTY, VIKING SHALL HAVE NO LIABILITY OR OBLIGATION WITH RESPECT TO ANY PRODUCT CLAIMED TO BE DEFECTIVE IN ANY MANNER. UNDER NO CIRCUMSTANCES SHALL VIKING BE LIABLE UNDER THIS WARRANTY OR OTHERWISE FOR SPECIAL, INCIDENTAL, INDIRECT, CONSEQUENTIAL OR PUNITIVE DAMAGES OF ANY KIND, INCLUDING, BUT NOT LIMITED TO, LOST OR UNREALIZED SALES, REVENUES, PROFITS, INCOME, COST SAVINGS OR BUSINESS, LOST OR UNREALIZED CONTRACTS, LOSS OF GOODWILL, DAMAGE TO REPUTATION, LOSS OF PROPERTY, LOSS OF INFORMATION OR DATA, LOSS OF PRODUCTION, DOWNTIME, OR INCREASED COSTS, IN CONNECTION WITH ANY PRODUCT, EVEN IF VIKING HAS BEEN ADVISED OR PLACED ON NOTICE OF THE POSSIBILITY OF SUCH DAMAGES, AND ‘NOTWITHSTANDING THE FAILURE OF ANY ESSENTIAL PURPOSE OF ANY PRODUCT.'